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SUMMARY 
We consider the problem of determining the stress distribution in an infinitely long isotropic homo geneous elastic layer 
containing two coplanar Griffith cracks which are opened by internal shear stress acting along the lengths of the cracks. 
The faces of the layer are assumed to be stress free. The cracks are located in the middle plane of the layer parallel to its 
faces. By using Fourier transforms, we reduce the problem to the solution of a set of triple integral equations with a 
cosine kernel and a weight function. These equations are solved exactly by using finite Hilbert transform techniques. 
Finally we derive the closed form expressions for the stress intensity factors and the crack energy. Solutions to the 
following problems are derived as particular cases: (i) a single crack in an infinite layer under torsion, (ii) two coplanar 
cracks in an infinite space under torsion, (iii) a single crack in an infinite space under torsion. 

1. Introduct ion 

The problem of determining the stress distribution in an infinitely long elastic strip containing 

two collinear cracks lying in the middle line of the strip and opened by the internal pressure has 
been considered by Lowengrub and Srivastava [1] and Dhaliwal [2, 3]. These authors reduced 
the problem to the solution ofa Fredholm integral equation of the second kind by using Fourier 
transforms, and then obtained its approximate solution by iteration assuming that the width of 

the strip is large in comparison to the length of the cracks. 

In this paper we consider the problem of an elastic layer containing two coplanar cracks lying 
in the middle plane of the layer when the cracks are opened by shear loading along the length of 

the cracks and the layer surfaces are stress free. The solution of the problem is reduced to the 
solution of triple integral equations whose solution is obtained in the closed form. These triple 
integral equations are an extension of the type of triple integral equations studied by Singh [4, 
5], and are more general than those discussed by Srivastava and Lowengrub [6]. A survey of the 

methods of solving triple integral equations may be found in Sneddon's book [7]. We obtained 
closed form expressions for the stress intensity factors and the crack energy for the general shear 
loading p(x), as well as for the two special cases ofp(x) = S cosh cx and p(x) = S. Solutions to 

the following problems are derived as particular cases: (i) a single crack in an infinite layer under 
torsion, (ii) two coplanar cracks in an infinite layer opened by shear loading, (iii) a single crack in 
an infinite space under torsion. 
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2. Statement of the problem and derivation of the triple integral equations 

Consider  a rectangular  cartesian coordinate  system such that  the cross-section of the layer is 
the strip - ~ < x < 0% - h < y < h, and the cracks are located at a < x < b, - b < x < - a, y = 0, 
I t  is assumed that  the edges of  the strip y = h, - h are stress free, and the cracks are opened by 

a variable shear stress acting on the faces of  the cracks. Due  to the symmet ry  abou t  the x-axis, 
the p rob lem can be solved by convert ing it into a mixed bounda ry  value p rob lem for the strip 
- oe < x < o% 0 < y < h. In  addition, if we assume that  the shear loading on the cracks is an 

even function of x, the p rob lem is further reduced to a semi-strip 0 < x < oc and 0 < y < h. 
The non-zero displacement  and stress componen t s  are given by 

~w •w 
u~ ~ w(x, y), ~ = ~ ~ x '  % = ~ ~ y '  (1) 

where/~ is the shear modulus  of the material .  

The  equat ion of equil ibrium reduces to 

+ w = 0. (2) 

The  solution of equat ion (2) m a y  be taken in the form:  

where, as usual, F~ and F~ denote  the opera tors  of the Fourier  sine and cosine t ransform, 
respectively; hence 

F f f ( ~ ,  y); ~ ~ x] = f(~, y) cos ~xd~, 

F [f(~, y); { ~ x] -- f(~, y) sin {x d~. (4) 

F r o m  (3) and (1) we find 

w(x, 0) = P FcE~,(r ~ ~ x], (5) 

d ( 2 ) ' F ~ [ q J ( O t a n h ~ ;  , ~ x ] .  (6) %(x, O, z) - d x  

The bounda ry  condit ions for the prob lem are: 

~y~(x, h, z) = O, 0 < x <  o% 

ar~(x, O, z) = -p(x), a < x < b, (7) 

u~(x,O,z)=O, 0 < x < a ,  x > b ,  

where p(x) is an even function ofx.  The above  bounda ry  condit ions are satisfied provided ~u(~) 
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satisfies the triple integral equations: 

Fc[~u(O; ~ x ] = 0 ,  0 < x < a ,  x > b ,  

d Fs[~t(O tanh h i ;  ~ x] / ~ "~§ p(x), - 
dx 

a < x < b .  

(8) 

(9) 

3. The solution of  the triple integral equations 

The solution of the triple integral equations of the above type has been discussed recently by 
Singh [8]. Following Singh, let us take 

~u(O= 9(t2)cos h rot sin(~t)dt,  (10) 

which satisfies (8), provided 9(t 2) satisfies the condition 

9(t 2) cosh dt = O. (11) 

Substituting for q/(O from (10) into (9) and interchanging the order of integration, we obtain 

d I cosh(ct) log sinh cx + sinh ct dt = np(x), a < x < b, (12) 
dx 9(t2) sinh cx - sinh ct 

a 

where we have used the result (see Gradshteyn and Ryzhik [9], p. 516, 4.116(2)) 

f l  ~ 1 log] 4-1 tanh(hO sin(~t) s in(~x)dx  = - f  

with c = n/(2h). 

sinh cx  + sinh ct I 

sinh cx  - sinh ct ' (13) 

(14) 

Interchanging the order of differentiation and integration in (12), we find that g(t 2) must satisfy 
the integral equation 

fi ' #(t 2) sinh c td t  zcp(x) 
, a < x < b. (15) 

2c cosh 2ct - cosh 2cx cosh cx 

Using the modified Tricomi theorem given by Singh [4], we find that the solution of the integral 
equation (15) is given by 

rcos    -cos  ca? cossack? 
g(t2) = - h- [cosh 2cb - cosh 2 c t J  • Lcosh 2cx c~sh~ea_]  

p(x) sinh cx 
x dx  

cosh 2cx - cosh 2ct 

2c2C1 

-~ [(cosh 2ct - cosh 2ca)(cosh 2cb - cosh 2ct)] ~ '  a < t < b, (16) 

where C 1 is an arbitrary constant. 
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Substituting for g(t 2) from (16) into (11), we obtain: 

4 sinh cb .[[ F cosh 2cb - cosh 2cx ]{  
Ci - ~ F(n/2, q) . .  Lcosh2cx c~sh ~ca A sinh cx p(x)dx 

f [ F c o s h 2 c t - c o s h 2 c a l ~  cosh ct 
x Lco~sh ~cb - co~sh ~ cosh 2cx - cosh 2ct dr, (17) 

where F(~/2, q) denotes the elliptic integral of the first kind and 

q = (sinh cb)-i(sinh2 cb - sinh 2 ca)L (18) 

Since we have the identity 

(cosh c x -  cosh  o)(cosh - cosh [ cosh - cosh c, ] 
cosh ex)(cosh,:y cosh c,:,) ] 1 + cosh a Z G~shgJ  

= F(cosh cb - cosh ct)(cosh cy - cosh ca)] ~ [ cosh cy - cosh ct ],  

k (cosh ct - co~sh ~ cb - cosh cy) A 1 - cosh cb c o ~ c t 3  
(19) 

we see that the solution (16), (17) may be written in the alternative form: 

1 b 1 2 F c o s h 2 c b - c o s h 2 c t ] =  I F c o s h 2 c x - c o s h 2 c a  ~ 
g(t2) = - h- L ~  = co~sh 2~-aJ L L ~  ~ cosh 2cx 

p(x) sinh cx 
x dx 

cosh 2cx - cosh 2ct 

2c2C2 

+ [(cosh 2ct - cosh 2ea)(cosh 2cb - cosh 2ct)] } '  (20) 

C 2 - 
4 sinhcb i J F c o s h 2 c b - c o s h 2 c t ] {  
lr F(~/Z, q) J ,  L ~osh ~ct ~ cTsh ~ca A cosh ctdt 

f ]  F cosh 2cx - cosh 2ca ] ~ sinh cxp(x) 
x L cosh 2cb - cosh 2cx J , cosh 2cx - cosh 2ct dx. 

(21) 

4. The stress intensity factors 

Substituting for ~t(~) from (10) into (6) and using (13), we obtain 

1 t '  9(t 2) sinh 2ct 
[ay=(x, O, Z)]o<~< a = - h- cosh cx ~ .  cosh 2ct - cosh 2cx dr, (22) 

1 If' g(t 2) sinh 2ct 
[%=(x, O, z)]x> b = ~ cosh cx cosh 2cx - cosh 2ct dt. (23) 

Substituting for g(t 2) from equations (20) and (16) into the above equations, we obtain the 
expressions: 

Journal of Engineering Math., Vol. 11 (1977) 337-347 



Two coplanar Griffith cracks 341 

2 g cosh 2cb - cosh 2cx 7 ~ 
{ ( T y z ( X , O , Z ) l o < x < a = ~  cosh cx  | L c o s h 2 c a  c o s h 2 ~ x J  / 

f l F c o s h 2 c y - c o s h 2 c a l  ~ p (y ) s inhcy  dy 

x Lcosh  2cb cosh 2 c y  cosh 2cy - cosh 2cx 

- 2c2C2 cosh cx[-(cosh 2ca - cosh 2cx)(cosh 2cb - cosh 2cx)]-~,  

2 [ cosh 2cx  - cosh 2ca ~ 
[o-,z(x, O, z)]x> b - -  cosh cx 

h Lcosh  2cx cosh 2cb J 

fo'[ - c o s h  2cb - cosh  2cy_l* P(Y/sinh cy 

x Lcosh 2cy cosh 2ca !j cosh 2cx - cosh 2cy 
dy 

+ 2c2C1 cosh cxE(cosh 2cx - cosh 2ca)(cosh 2cx - cosh 2cb)]-~-, 

where, we have used the relation 

f ' s in 2cuE(cosh - 2ca)(cosh 2cb - cosh 2cu)] ~ 2cu cosh 

x (cosh 2cu - cosh 2cy)- 1 du 

h[(cosh 2ca - cosh 2cy)(cosh 2cb - cosh 2cy)] ~, 

O, 

- h[(cosh 2cy - cosh 2ca)(cosh 2cy - cosh 2cb)] ~, 

We now find the stress intensity factors in the form: 

O < y < a ,  

a < y < b  

y > b .  

N~ = lim [{2(a - x)}~ay~(x, 0, z)] 
x - - - ~ a  - -  

zc [sinh 2ca(sinh 2 C b - sinh 2 ca)] ~ c(sinh 2 cb - sinh 2 ca) 

fa' p(y) sinh cy 1 
x [sinh 2 cb - sinh z cy)(sinh 2 cy - sinh 2 ca)] ~ dy - ~c2C2 , 

and 

N b = lim [{2(x - b)}~ayz(x, O, z)] 
x-*b+ 

zc Esinh 2cb(sinh 2 cb - sinh 2 ca)] ~ 2c(sinh 2 cb - sinh 2 ca) 

fa' p(y) sinh cy ] 
x [(sinh 2 cy - sinh 2 ca)(sinh 2 cb - sinh 2 cy)] ~ dy + Tgc2C1 , 

where C a and C 2 are given by equat ions (17) and (21) respectively. 

(24) 

(25) 

(26) 

(27) 

(28) 
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5. The crack energy 

From equations (5) and (10), we find that the shape of the cracks is given by: 

= - -  g( t  2) c o s h  ctdt. (29) E Uz(X, O, z)]. < ~ < b 

The total energy required to open the crack is given by: 

W = - 2  ar~(x, 0, z)u~(x, O, z ) d x  = 2 p(x)uz(x, O, z )dx .  (30) 

Hence from (29) and (30), we obtain: 

W =  --  9(t 2) cosh ct P( t )d t  (31) 
/2 

where 

f: P(t) = p(x) dx. (32) 

6. Solution for partkular values of p(x) 

Here we will obtain the closed form expressions for the stress intensity factors and the crack 
energy for the following particular values of p(x): 

Case (a): 

p(x) = S cosh cx,  (33) 

where S is a constant. 
Substituting for p(x) from (33) into (16) and (20) and using the following well-known result 

fi ' c(cosh ct - cos h ca_)V(coshh_c_b_ - cosh ct) -~ sinh c td t  

cosh ct - cosh ey  

E   oshc, cos  a) ] 
= ~ cosec vTr 1 - c o s v T q k c - ~ s h c b ~ c ~ s h c y -  , 

we obtain 

Ic~ 2cb- cosh 2c 15 
9(t 2) = -- S cosh 2ct  - cosh 2ca J 

o r  

Ivl < 1, a < y < b, (34) 

q- 2czc2[(cosh 2ct - cosh 2ca)(cosh 2cb - cosh 2ct)] -5, (35) 

[- cosh 2ct  - cosh 2 c a ]  5 

9(t2) = S L ~  - cosh 2ct_] 

+ 2c2Cl[(cosh 2ct  - cosh 2ca)(cosh 2cb - cosh 2ct)] 5. (36) 
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F r o m  (33), (17) and (21), we obta in  

C 1 = [S/ (c2F)](F sinh 2 ca - E sinh 2 cb), 

C 2 (S/c2)(t  - E lF)  sinh 2 cb, 

343 

(37) 

where F = F(7c/2, q) and E = E(rc/2, q) are respectively the elliptic integrals of the first and 

second kind and q is given by equat ion (18). 
Hence  we may  write 

9(t 2) = S[(sinh 2 ct  - sinh 2 ca)(sinh 2 cb - sinh 2 ct)] -~  

x [sinh 2 ct - (E/F)  sinh 2 cb]. (38) 

F r o m  (22), (23), (35), (36) and (37), we obtain  

[arz(x, 0, z)] o <x<, -- S cosh c x [ ( E / F )  sinh 2 cb - sinh 2 cx]  

x [(sinh 2 ca - sinh 2 cx)(sinh 2 cb - sinh 2 cx ) ] -~ ,  (39) 

[ayz(x, 0, z)]x> b = S cosh cx[s inh 2 cx  - (E/F)  sinh 2 cb] 

x [(sinh 2 cx  - sinh 2 ca)(sinh 2 cx  - sinh 2 cb)]-~ .  (40) 

We obta in  the following expressions for the stress intensity factors N o and N b respectively 
f rom equat ions (27), (37)2 and equat ions (28), (37)1 : 

N a = S cosh(ca)[sinh 2ca(sinh 2 cb - sinh 2 ca)] -~  

x [(ELF) sinh 2 cb - sinh 2 ca], (41) 

N b = S(1 - E/F)  cosh cb sinh z cb[sinh 2cb(sinh 2 cb - sinh 2 ca)] -~,  (42) 

where we have used the integral 

f c sinh(2cy)[(sinh 2 cb - sinh 2 cy)(sinh z cy  - sinh 2 c a ) ] - ~ d y  = re. (43) 

Substi tut ing for 9(t 2) f rom (38) into (29) and mak ing  use of the following integrals 

c cosh(ct)[(sinh 2 ct - sinh 2 ca)(sinh 2 cb - sinh 2 c t ) ] - ~ d t  = F2(2, q)/sinh(cb),  

f '  I s i n h 2 c t - s i n h 2 c a ~  ~ 
c cosh(ct) s i n ~  ~ 2 s i ~  ~ J  dt 

[ s i n h 2 c a F 2 ( 2 ,  q)]  (44) 
= sinh(cb) E2(2 , q) sinh 2 cb 

which can be obta ined  f rom Gradsh teyn  and Ryzhik [9], we obtain  

S 
[Uz(X, O, Z)]a<:,<b -- [s inh(cb)(E 2 - F2E/F)] ,  (45) 

IZC 
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where F 2 and E 2 are elliptic integrals of the first and second kind respectively and 

 Fsinh c  } 
2 = s in-1 ([_ sinh 2 cb sinh 2 c a  " (46) 

F r o m  (31), (32) and (33), we find that  the total  work  done to open the crack is given by 

W =  - -  9(t 2) cosh(ct)(sinh ct - sinh ca)dt. 
/tc 

(47) 

Substi tuting for 9(t 2) f rom (38) into (47), we find that  

W = (11 - I2)S2/(itc), (48) 

where 

I a = sinh(2ct)[sinh 2 ct - (E/F) sinh 2 cb] 

x [(sinh 2 ct - sinh 2 ca)(sinh 2 cb - sinh 2 ct)]--~dt 

12 = 2 cosh(ct) sinh(ca)l-sinh 2 ct - (E/F) sinh 2 cb] 

x [(sinh 2 ct - sinh 2 ca)(sinh 2 cb - sinh 2 c t ) ] -~dt .  

Evaluat ing 11 and 12 by making  use of the integrals (44) for x = a, we find that  

12 = 0  

and hence 

I 1 S  2 g S  2 
W - -  _ _  - -  _ _  

tiC 2tiC 2 

Case (b): 

p(x)= s 

[sinh 2 ca + (1 - 2ELF) sinh 2 cb]. (49) 

In this case, we find f rom (27) and (28) that  

N a = cosh(ca)[s inh(2ca)(s inh 2 cb - sinh 2 ca)] -~  
7r 

1 x 2 S F  ~ - ,  ql (cosh cb) - l ( s inh  2 cb - sinh z ca) - 2c2C2 , 

N b = - -  cosh(cb)[sinh(2cb)(s inh z cb - sinh z ca)] -~  
7E 

x [ 2 S F ( 2 ,  q x ) ( c o s h c b ) - t ( s i n h 2 c b - s i n h 2 c a ) + 2 c Z C 1  ] ,  

(51) 

(52) 
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where  

ql  = (cosh cb)-l(cosh 2 cb - cosh 2 ca) ~ 

a n d  C 1 a n d  C 2 m a y  be  d e t e r m i n e d  f rom (17), (21) a n d  (50). 

(53) 

7. Derivation of the solution of particular problems 

I n  this  sect ion we will der ive  so lu t i on  of the  fo l lowing  pa r t i cu l a r  p r o b l e m s :  

(i) A single crack in an infinite layer under torsion." 

If we have  a single crack loca ted  at  - b < x < b, y = 0, in the layer  - ~ < x < o% - h < y < h, 

we let a ~ 0 in  (28), (31) a n d  (32) to o b t a i n  the  fo l lowing  express ions  for the stress in tens i ty  factor  

a n d  c rack  energy  for this  p r o b l e m :  

N b = - -  (2c s inh 2cb) ~ p(y)(sinh 2 cb - s inh  2 cy)-~dy 
7~ 

+ z~c co th  cb(s inh 2cb)-1clJ ,  (54) 

2fo ;i W =  ~-  g(t 2) cosh ct P(t)dt, P(t) = p(x)dx, (55) 

where  g(t 2) a n d  C 1 are g iven  by  (16), (17) a n d  (18) by  t a k i n g  a = 0. 

F o r  p(x) = S eosh cx, we f ind 

Nb = S(sinh(2cb)/2c) �89 (56) 

7r 
W = 2/zc ~ s inh 2 cb. (57) 

A n d  for p(x) = S, we f ind 

N b -- - -  s inh  2cb 2SF , t a n h  cb s inh  cb + 2c2C1 coth  cb , 
7~ 

where  C 1 m a y  be d e t e r m i n e d  f rom (17) for a = 0 a n d  p(x) = S. 

(ii) Two coplanar cracks in an infinite plane under torsion: 

If the  cracks  are  loca ted  at a < Ixl < b, y = 0 in  an  inf ini te  p l ane  - oo < x < oo, - oo < y < oo, 

we let h ~ oo (i.e. c ~ 0) in  the resul ts  of  Sect ions  4 a n d  5 to o b t a i n  

2 ( b 2 - a 2 ) ~  fi' yp(y)dy 
N i l  = - -  - - - -  a , / ( b 2  _ a 2) 

2 ( b 2 - a 2 ) ~ f ]  yp(y)dy 
N b  = - -  

7C b x / ( b  2 __ y2) (y2  __ a 2) 

2f W = - -  g(tz)P(t)dt, P ( t ) =  p(x)dx, 
It 

C2 

x/a(b 2 - aZ) ' 

C1 + 
x/b(b 2 - a2) ' 

(59) 

(60) 

(61) 
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where 

g ( t 2 )  = - 2  ~ t 2 - a 2 )  ~ (b fb  2 - x2"~ xp(x) , 

" t~--#-'~) L tTmT-,~) ~m~-, ~a"~ 
C 1 

~/(t 2 - a2)(b 2 - t2) , 

o r  

g(t2 ) = 2 {b2-t2"] ~ I b(x2-a2"] ~ xp(x) dx 

- ; t 4 ~ - a V  L \ ~ - ~ )  ~ ~-t~ + 
C2 

x / ( t  2 - -  a 2 ) ( b  2 - t2)  ' 

2 b f ' ( b 2 - _ x 2 )  ~ f f ( t 2 - a 2 )  dt 
C1 ~ - -  n F(n/2, x /1  - b2/a 2) \ x2 - a2 ) xp(x)dx \ ~ - _ t 2 j  xa _ t2 ,  

C2 =--2 b f f  (b2-t2x]�89 f f  (x2--a2)�89 dx 
F(n/2, x/1 - b2/a 2) k t ~ a 2  ] dt xp(x) b2 ~ ~s xs  ~ t2 

For  p(x) = S, we obtain 

N .  = S[b2E(n/2, x /1  - a2/b2)/F(n/2, . f  l - a2/b 2) - a2j/~/a(b 2 - a2), (62) 

N b = Sb2[1 - E(n/2, x/1 - a2/b2)/F(n/2, x/1 - a2/b2)]/x/b(b2 - a2), 

~S 2 
W =  - -  [a 2 + b 2 - 2b2E(n/2, ~/1 - a2/b2)/r(n/2, x/1 - a2/b2)]. 

21~ 

(63) 

(64) 

(iii) A single crack in an infinite plane under torsion: 

If  a single crack is located at - b < x < b, y = O, in an infinite plane - ~ < x < ~ ,  - oo < y 
< ~ ,  we let h ~ ~ (i.e. c ~ O) in the results obtained in (i) above or put  a = 0 in the results (60) 

and (61) and obtain:  

2s 
N b = - -  x / b  __P(Y) dy, (C 1 ~ 0), (65) 

7r x/b 2 _ y2 

W =  - n ~  . x / ~ =  t 2 x2 _ ta p(x)dxdt,  P(t) = p(x)dx, (66) 

for a single crack of length 2b. When  the shear loading is constant  (i.e. p(x) = S),.we obtain 

nS2b 2 (1 + ~/) $2b2 ' (67) 
Nb=S~ ,  W- 2~-- 2E 

where E is the Young's  modulus  and t / is  the Poisson's  ratio of the elastic material. The 

expression (67) for the crack energy agrees with the one given by Sneddon and Lowengrub  [10, 

p. 38] except for a factor 2 in the denomina tor  which obviously is a printing mistake in their 

result. 
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