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SUMMARY

We consider the problem of determining the stress distributionin aninfinitely longisotropichomogeneous elasticlayer
containing two coplanar Griffith cracks which are opened by internal shear stress acting along the lengths of the cracks.
The faces of the layer are assumed to be stress free. The cracks are located in the middle plane of the layer parallel to its
faces. By using Fourier transforms, we reduce the problem to the solution of a set of triple integral equations with a
cosine kernel and a weight function. These equations are solved exactly by using finite Hilbert transform techniques.
Finally we derive the closed form expressions for the stress intensity factors and the crack energy. Solutions to the
following problems are derived as particular cases: (i) a single crack in an infinite layer under torsion, (ii) two coplanar
cracks in an infinite space under torsion, (iii) a single crack in an infinite space under torsion.

1. Introduction

The problem of determining the stress distribution in an infinitely long elastic strip containing
two collinear crackslyingin the middle line of the strip and opened by the internal pressure has
been considered by Lowengrub and Srivastava[1] and Dhaliwal [2, 3]. These authorsreduced
the problem to the solution of a Fredholmintegral equation of the second kind by using Fourier
transforms, and then obtained its approximate solution by iteration assuming that the width of
the strip is large in comparison to the length of the cracks.

In this paper we consider the problem of an elasticlayer containing twocoplanar crackslying
inthemiddle plane of the layer when the cracks are opened by shear loading along the length of
the cracks and the layer surfaces are stress free. The solution of the problem is reduced to the
solution of triple integral equations whose solution is obtained in the closed form. These triple
integral equations are an extension of the type of triple integral equations studied by Singh [4,
5],and are more general than those discussed by Srivastavaand Lowengrub[6]. Asurvey ofthe
methods of solving triple integral equations may befound in Sneddon’s book [ 7]. We obtained
closedformexpressionsfor thestressintensity factors and the crack energy for the general shear
loading p(x), as well as for the two special cases of p(x) = S cosh cx and p(x) = S. Solutions to
thefollowing problems are derived as particular cases: (i)asingle crack in aninfinite layer under
torsion, (ii) two coplanar cracksin aninfinite layer opened by shear loading, (iii) asingle crack in
an infinite space under torsion.
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2. Statement of the problem and derivation of the triple integral equations

Consider a rectangular cartesian coordinate system such that the cross-section of the layer is
the strip — 00 <x < 00, —h <y <h,and thecracks arelocatedata<x <b,—b<x< —a,y =0,
It is assumed that the edges of the strip y = h, — k are stress free, and the cracks are opened by
a variable shear stress acting on the faces of the cracks. Due to the symmetry about the x-axis,
the problem can be solved by converting it into a mixed boundary value problem for the strip
— o0 < x < 0,0 < y<h.In addition, if we assume that the shear loading on the cracks is an
even function of x, the problem is further reduiced to a semi-strip0 < x < wand 0 < y < h.
The non-zero displacement and stress components are given by

dw ow

U, = W(xo y)’ O =877 (l)
0x
where g is the shear modulus of the material.

The equation of equilibrium reduces to

0 0*
—+—|w=0.
<6x2 * oy* )W @)
The solution of equation (2) may be taken in the form:
1/2\¢ cosh(h — y)¢ J
=—|—] F —=; f-x|, 3
w(x, ) p (n) c [l//(f) cosh e {—x 3)

where, as usual, F, and F, denote the operators of the Fourier sine and cosine transform,
respectively; hence

2\t [=
F[fl¢&, y); ¢~ x] =<;> J &, y) cos Exdé,
[¢]

. S\E [ '
FAS y);E—x] = (;) J A&, ) sin {xdé. 4)
0]
From (3) and (1) we find
1/2\¢
w(x, 0) = — (—) F Iy, &-x], (5)
u\n
d [(2\*
0,(x,0,2) = — —— (*) Fly()tanhl; & —x]. (6)
dx \n
The boundary conditions for the problem are:
Uyz(x, h,z) =0, 0<x< oo,
Uyz(xb 07 Z) = —p(x)a a<x< b, (7)
u,(x,0,2) =0, 0<x<a x>b,

where p(x) is an even function of x. The above boundary conditions are satisfied provided y(&)
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satisfies the triple integral equations:

FIw@; ¢-x]=0, O<x<a x>b, ®)
iFs[u./(é) tanh hé; & —x] = <1) px), a<x<bh ©)
dx 2

3. The solution of the triple integral equations

The solution of the triple integral equations of the above type has been discussed recently by
Singh [8]. Following Singh, let us take

© = f (1) cosh 2 ) sin(0)de (10)
= — COS — ] SIn
=7 g o :
which satisfies (8), provided g(¢?) satisfies the condition
r (¢?) cosh (m ) dt=0 (11)
CO —_— = U
AR 7

Substituting for /(&) from (10) into (9) and interchanging the order of integration, we obtain

sinh ¢x + sinh ct

d
— rg(tz) cosh(ct) log
dx !,

dt = np(x), a<x<hb, (12)

sinh ¢x — sinh ct

where we have used the result (see Gradshteyn and Ryzhik [9], p. 516, 4.116(2))

@ 1 inh inh ct |
J £71 tanh(h) sin(&2) sin(Ex)dx = — log| o X+ Sl (13)
o 2 sinh ¢x — sinh ct
with ¢ = 7/(2h). (14)

Interchanging the order of differentiation and integration in (12), we find that g(t?) must satisfy
the integral equation

J > g(t*) sinb ctdt np(x)
2c

cosh 2¢f — cosh 2cx  cosh cx a<x<b. (15)

a

Using the modified Tricomi theorem given by Singh [4], we find that the solution of the integral
equation (15) is given by

2 [cosh 2ct — cosh 2ca J“ J” [cosh 2¢h — cosh 2¢x :r

9t = — —
h | cosh 2¢b — cosh 2ct cosh 2¢x — cosh 2ca

a

p(x) sinh ¢x

cosh 2¢x — cosh 2ct
2¢2Cy
(cosh 2ct — cosh 2ca)(cosh 2ch — cosh 2ct)]*’

+ a<t<h, (16)
L
where C, is an arbitrary constant.
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Substituting for g(¢*) from (16) into (11), we obtain:

_ 4 sinhch [* [ cosh 2¢b — cosh 2cx
YU om F2,q ),

P[ cosh 2¢t — cosh 2ca |* cosh ct
X
cosh 2¢b — cosh 2ct cosh 2¢x — cosh 2c¢t

sinh d
cosh 2¢x — cosh 2ca} sinh cx plx)dx

a

where F(r/2, g) denotes the elliptic integral of the first kind and
g = (sinh ¢b)~ *(sinh? cb — sinh? ca)*.

Since we have the identity

[(cosh ¢x — cosh ca)(cosh cb — cosh cy) T [1 cosh ¢y — cosh ct

(cosh ¢b — cosh cx)(cosh ¢y — cosh ca)

cosh ¢t — cosh ca

3 [(cosh cb — cosh ct)(cosh ¢y — cosh ca) T [1 cosh ¢y — cosh ct

(cosh ct — cosh ca)(cosh cb — cosh cy)

we see that the solution (16), (17) may be written in the alternative form:

cosh ¢cbh — cosh et |’

g’ = ——

h | cosh 2¢t — cosh 2ca

a

p(x) sinh ¢x

cosh 2¢cx — cosh 2ct

N 2c¢%C,
[(cosh 2ct — cosh 2ca)(cosh 2cb — cosh 2ct)]t’

2

4 sinh ch J"’ [cosh 2¢ch — cosh 2¢t
n F(n/2,q9) J,

® I cosh 2¢x — cosh 2ca | sinh ¢cx p(x)
a .cosh 2¢x — cosh 2¢t

} cosh ctdt
cosh 2¢t — cosh 2ca

cosh 2¢b — cosh 2¢x

4. The stress intensity factors

Substituting for (&) from (10) into (6) and using (13), we obtain

g(t?) sinh 2ct
cosh 2c¢t — cosh 2¢x

1 b
[ayz(x7 0, Z)]o <x<g — — F cosh ¢x J

g(t?) sinh 2ct
-cosh 2¢x — cosh 2c¢t

1 (]
[Uyz(x7 07 Z)]x>b = Z cosh ¢cx J‘

2 [ cosh 2¢b — cosh 2¢t JF ([ cosh 2¢x — cosh 2ca
cosh 2¢b — cosh 2¢x

(18)

(19)

(21)

(22)

(23)

Substituting for g(¢?) from equations (20) and (16) into the above equations, we obtain the

expressions:
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2
{O-yz(x7 07 Z)]O <x<a — Z cosh cx |:

cosh 2¢b — cosh 2¢x T
cosh 2ca — cosh 2¢x

J”’ |:cosh 2cy — cosh 2ca :r p(y) sinh cy

cosh 2¢b — cosh 2¢y

cosh 2¢y — cosh 2¢x

— 2¢*C, cosh cx[(cosh 2ca — cosh 2cx)(cosh 2¢ch — cosh 2¢x)] 2,

cosh 2¢x — cosh 2ca

2
— = cosh
[0,5(%, 0, 2)].> p OB [cosh 2¢x — cosh 2¢h

:

cosh 2cy — cosh 2ca

cosh 2¢x — cosh 2cy

r |:cosh 2ch — cosh 2cy :r p(y) sinh cy
X

+ 2¢2C, cosh ex[(cosh 2¢x — cosh 2ca)(cosh 2ex — cosh 2¢b)] ™,

where, we have used the relation

(]
J sin 2cu[(cosh 2cu — cosh 2ca)(cosh 2¢chb — cosh 2cu)]*

X (cosh 2cu — cosh 2¢y) ™ tdu

h[(cosh 2ca — cosh 2cy)(cosh 2ch — cosh 2¢y)]?%, 0<y<a,

= 0’

a<y<b

— h[(cosh 2¢cy — cosh 2ca)(cosh 2cy — cosh 2¢h)]?, y > b.

We now find the stress intensity factors in the form:

N,= lim [{2(a — X)}*0,,(x, 0, 2)]

xX—raga—

|:2c(sinh2 cb — sinh? ca)

2 (h 2 cosh ca
"~z \xn/ [sinh 2ca(sinh? cb — sinh? ca)]*
J b p(y) sinh cy
. [sinh? cb — sinh? cy)(sinh? ¢y — sinh? ca)]

and

N, = lim [{2(x - b)}¥0,.(x,0,2)]

1 dy - nCZCZ:Ia

x—=b+
__2(}1)% cosh ¢b [2(. 12 eb — sinh?
=7\ Tsinh 2ch(sinh® cb — sinh? cqp | (SR ¢b — sinh” ca)
) ' :
p(y) sinh cy
X . . . . ~d xcy |,
L [(sinh? ¢y — sinh? ca)(sinh? cb — sinh? ¢y)]* Y+ ety

where C, and C, are given by equations (17) and (21) respectively.

341

(24)

(25)

(26)

@7

(28)
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5. The crack energy

From equations (5) and (10), we find that the shape of the cracksis given by:

1 b
Lo, (x, 0, 2) ] cicp = — J g(t?) cosh ctdt. (29)
HoJy
The total energy required to open the crack is given by:

b b
W= -2 j 0,.(x, 0, 2)u(x, 0, Z)dx = 2 J p(x)u,(x, 0, z)dx. (30

a

Hence from (29) and (30), we obtain:

b
W= 2 J g(t?) cosh ct P(t)dt (31)
HoJa
where
P(t) = J p(x)dx. (32)

6. Solution for particular values of p(x)

Here we will obtain the closed form expressions for the stress intensity factors and the crack
energy for the following particular values of p(x):

Case (a):
p(x) = S cosh ¢x, (33)

where § is a constant.
Substituting for p(x) from (33) into (16) and (20) and using the following well-known result

3 h ¢t — cosh ca)®(cosh ¢h — cosh ct)™?
f c(cosh ct — cosh ca)(cosh cb — cosh ct) sinh ctdt

cosh ct — cosh ¢y

a

cosh ¢y — cosh ca \’
=mcosecvn| 1 — cosuvnm , <1, a<y<hb, (34)
cosh ch — cosh ¢y

we obtain
cosh 2¢ch — cosh 2ct |*
)= -8
9 [cosh 2ct — cosh 2ca]
+ 2¢2C,[(cosh 2ct — cosh 2ca)(cosh 2¢cb — cosh 2ct)] 72, (39)
or
cosh 2ct — cosh 2¢ca |?
=S
9(t") [cosh 2¢h — cosh 2ct]
+ 2¢2C,[(cosh 2ct — cosh 2ca)(cosh 2¢b — cosh 2c1)] . (36)
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From (33), (17) and (21), we obtain

C, = [S/Ac*F)](F sinh? ca — E sinh? cb), } a7

C, = (S/c*)(t — E/F) sinh? cb,

where F' = F(n/2, q) and E = E(n/2, q) are respectively the elliptic integrals of the first and
second kind and ¢ is given by equation (18).
Hence we may write

g(t?) = S[(sinh? ¢t — sinh? ca)(sinh? ¢b — sinh? c)] %
x [sinh? ¢t — (E/F) sinh? cb]. (38)
From (22), (23), (35), (36) and (37), we obtain

[0,,(%, 0, 2)]g <5<, = S cosh cx[(E/F) sinh® cb — sinh? ¢x]
x [(sinh? ca — sinh? cx)(sinh? cb — sinh? cx)] "%, (39)
[0,,(x,0,2)],, = S cosh cx[sinh? cx — (E/F) sinh? cb]

x [(sinh? c¢x — sinh? ca)(sinh? cx — sinh? ch)] 2. (40)

We obtain the following expressions for the stress intensity factors N, and N, respectively
from equations (27), (37), and equations (28), (37), :

2\t 1
N,= (-) S cosh(ca)[sinh 2ca(sinh? cb — sinh? ca)] "%

c
x [(E/F)sinh? ¢b — sinh? ca], (41)
N, = <?> S(1 — E/F) cosh cb sinh? cb[sinh 2ch(sinh? cb — sinh? ca)] %, 42)

where we have used the integral

(*b

¢ | sinh(2cy)[(sinh? ¢b — sinh? cy)(sinh? ¢y — sinh? ca)] " *dy = n. 43)

Substituting for g(¢*) from (38) into (29) and making use of the following integrals

(*b

¢ | cosh(ct)[(sinh? ¢t — sinh? ca)(sinh? ¢b — sinh? ct)]~*dt = F,(J, q)/sinh(cb),

vXx

(*b

¢ | cosh(ct) [

sinh? ¢t — sinh? ca [*
sinh? cb — sinh? ¢t

sinh? ca
= sinh(ch) | E;(4, q) — —=—F,(4, 9) |,
sinh(c )[ e @) = ol q)] (44
which can be obtained from Gradshteyn and Ryzhik [9], we obtain
N
[u,(x,0,2)],., <, =—[sinh(ch)(E, — F,E/F)], (45)
He
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where F, and E, are elliptic integrals of the first and second kind respectively and
PR {[ sinh? cb — sinh? cx T 46
= sin .
sinh? ¢b — sinh? ca )

From (31), (32) and (33), we find that the total work done to open the crack is given by

25 [*
W=— J g(t*) cosh(ct)(sinh ct — sinh ca)dt. (47)

Substituting for g(t?) from (38) into (47), we find that
W= (I, = 1)S*/(uo), (48)
where
b
I = J sinh(2ct)[sinh? ct — (E/F) sinh? cb]
x [(sinh? ¢t — sinh? ca)(sinh? cb — sinh? ct)] " *dt
b
I,=2 J cosh(ct) sinh(ca)[sinh? ct — (E/F) sinh? cb]
x [(sinh? ct — sinh? ca)(sinh? cb — sinh? ct)] " *dt.

Evaluating I, and I, by making use of the integrals (44) for x = g, we find that

I,=0
and hence
1,5% 52
w=""" =" [sinh? ca + (1 — 2E/F) sinh® cb]. (49)
uc 2uc
Case (b):
p(x)=S§

1/2\ L
N,=— <~> cosh (ca)[sinh(2ca)(sinh? cb — sinh? ca)]™*
c

X [ZSF <%, q1> (cosh cb)~ Y(sinh? ¢cb — sinh? ca) — ZCZCZ:I, (51)

1/2\ ,
Ny=— <—> cosh (ch)[sinh (2¢ch)(sinh? cb — sinh? ca)] " *
T \¢

X [2SF (%, q1> (cosh ¢b) " (sinh? ¢b — sinh? ca) + ZczClJ, (52)

Journal of Engineering Math., Vol. 11 (1977) 337-347



Two coplanar Griffith cracks 345

where
g, = (cosh cb) " *(cosh? cb — cosh? ca)? (53)

and C, and C, may be determined from (17), (21) and (50).

7. Derivation of the solution of particular problems

In this section we will derive solution of the following particular problems:

(i) A single crack in an infinite layer under torsion:
If we have a single crack located at —b < x < b,y =0,inthelayer —o0 <x < o0, —h <y <h,

weleta — 0in(28),(31)and (32) to obtain thefollowing expressions for the stress intensity factor
and crack energy for this problem:

1 (P . . \
N, = —(2c sinh 2¢b)* [J‘ p(»)(sinh? ¢b — sinh? cy) " *dy
T

0

+ mc coth ch(sinh 2¢cb)~'C 1:|, (54)

w=2 jb g(t?) cosh ct P(t)dt, P(t) = jt p(x)dx, (53)
U

[ [

where g(t%) and C, are given by (16),(17) and (18) by taking a = 0.
For p(x) = S cosh cx, we find

N, = S(sinh(2ch)/2¢)?, (56)
Y/ . 2
W= e sinh® cb. (57

And for p(x) = §, we find

1 -3
N, = — (% sinh 2cb> |:2SF < - tanh cb> sinh ¢b + 2¢2C, coth cb:|
T

where C, may be determined from (17) for a = 0 and p(x) =

(i)) Two coplanar cracks in an infinite plane under torsion:

If the cracks are located at a < |x| < b, y = Oin an infinite plane — 00 < x < 00, — 0 <y < 00,
welet h — oo (i.e. ¢ — 0) in the results of Sections 4 and 5 to obtain

b* —a yp y)dy ‘ C,
N, =~ - , 59
< ) J N —a¥)  Jab® - ad) &)
b* —a yp(y dy C
Nb = < ) J\ + . ’ (60)
JO =y —a?)  Jbb? - )
W= % f HDP@OL, Pl) = J p(x)dx, (61)
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(tz)—-:% t2 —a®\t (P /b%2 — x2\* xp(x) 4 C,
g - p2 2 2__42 2 _ 42 X+ 2 vz
n a \X x*—t NGRS (D)
) = 2 b —t*\? [P /x® —a*\! xp(x) J C,
g - 2 _ g2 b2 — x2 2 _ 42 X+ 2 a2 .2y
n a’/ Ja X/ x*—t (2 = a®)(b? —t?)

2 b b (b —x2 b (t? —a? dt
Ci=— e 77| *p(x)dx 2_ .2 2_ 42
n F(n/2,/1—b%a?) J, \X" —a o \DT =17 ) X" —1

c 2 b r(bz——tz)%dr (xz—az)% dx
=— —_—— t .
2 n F(r/2, \/1 — b¥a?) Ja 2 — g2 . xp(x) b? — x2 x2 — 2

For p(x) = S, we obtain

or

8

= S[B2E(n/2, \/1 — a2/b?)/F(r/2, /1 — a*/b?) — a?1//a(b® — a?) (62)
N, = Sb2[1 E(m/2, /1 — a?/b?)/F(r/2, /1 — a*/b*)]//b(b* — a*) (63)
— 2b%E(r/2, \/1 — a*/b%)/F(n/2, /1 — a*/b?)]. (64)

(iii) A single crack in an infinite plane under torsion:

If a single crack is located at —b < x < b, y =0, in an infinite plane — o0 <x < 00, —0 <y
< oo, weleth — o (i.e.c — 0)in the results obtained in (i) above or put a = 0in the results (60)
and (61) and obtain:

7 (b
Nb:;\/b Jvojbpép—i—)—y—zdy, (C,—0), (65)
\/lt: (i - J \/ b? — tz p(x)dxdt, P(t) = ﬁ) p(x)dx, (66)

for a single crack of length 2b. When the shear loading is constant (i.e. p(x) = S),-we obtain

- 7S (1+7)
N,=8/b, W= = S2b2, 67
v =5/ 2u 2E (67)

where E is the Young’s modulus and # is the Poisson’s ratio of the elastic material. The
expression (67) for the crack energy agrees with the one given by Sneddon and Lowengrub[ 10,
p. 38] except for a factor 2 in the denominator which obviously is a printing mistake in their
result.
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